

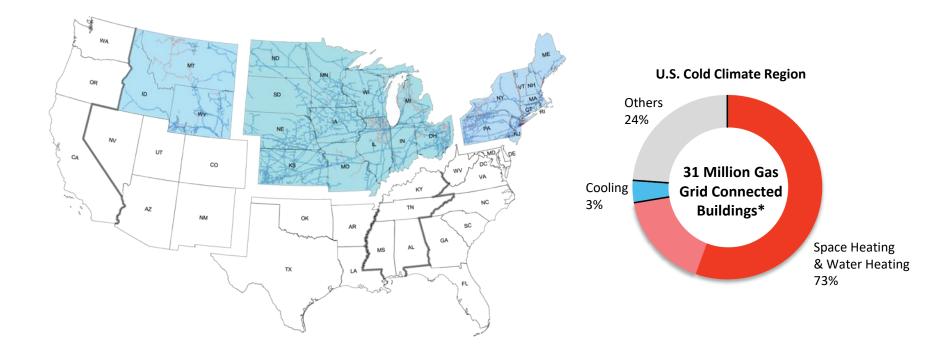
**NECPUC Symposium, Hartford, Connecticut – June 4, 2019** New England Conference of Public Utility Commissioners

Decarbonization through Energy Efficiency

# ENERGY EFFICIENCY GAMECHANGER

- Natural Gas-Powered Heat Pump
- 50% Reduction in Energy Use
- Cooling with Natural Gas
- One Appliance Heating, Hot Water, Air Conditioning and Refrigeration
- Cold Climate Heating with no additional heat source (even below 32 degrees F)
- **No Refrigerants** & No Toxic Emissions or Materials



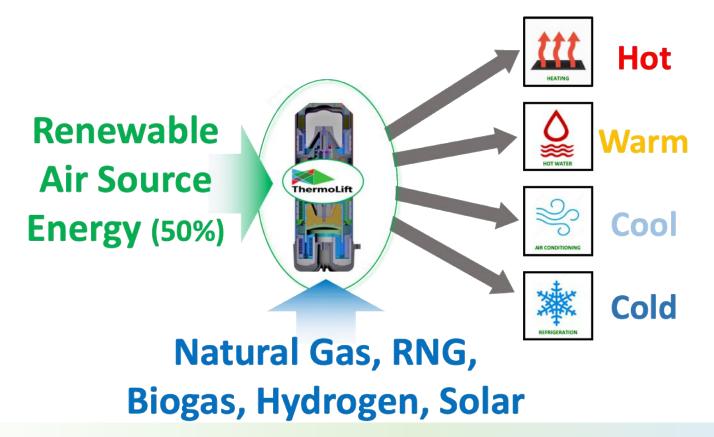









## > 70% Cold Climate Building Energy = Heating






# **THERMOLIFT: DOE #1 RANKED HVAC TECHNOLOGY**

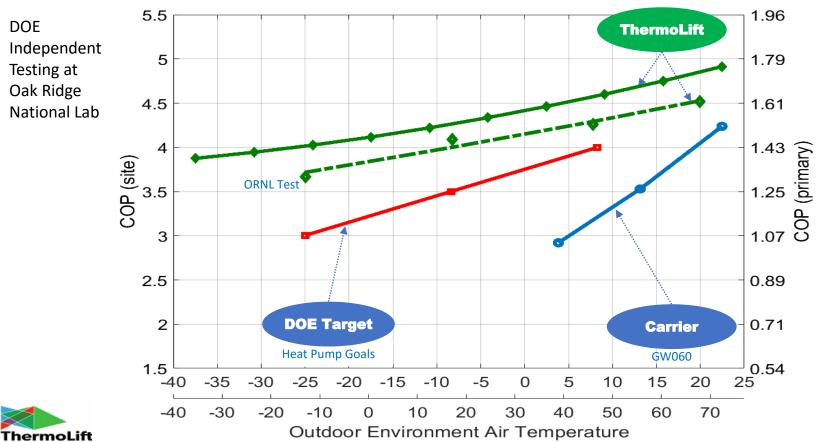


## **THERMAL COMPRESSION HEAT PUMP (TCHP™)**



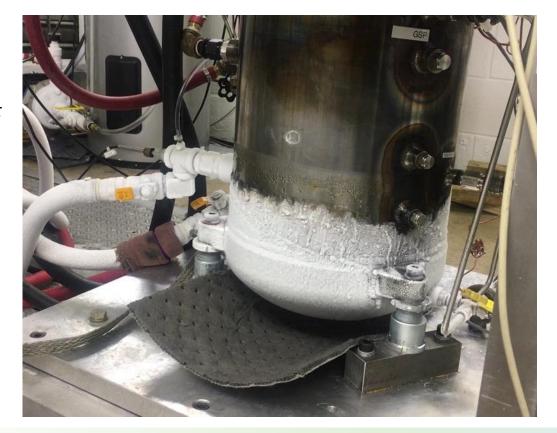


## **ACCELERATING ENERGY EFFICIENCY INNOVATION**


### Superior Efficiency with Zero Refrigerants, Zero HFCs

0.9 Soon: HCTC Exceeds 0.8 Vapor Compression Carnot System Efficiency Theoretical Potential 0.7 0.6 0.5 Today: HCTC Exceeds 0.4 Vapor Compression System Level Efficiency 0.3 0.2 0.1 Vapor Compression ThermoLift 1800 1950 2000 1850 1900 2010 2020 Year

Already Surpassing 200 Years of Vapor Compression Technology




### SIGNIFICANTLY EXCEEDS STATE OF THE ART - IN EFFICIENCY & PERFORMANCE



### **LOW TEMPERATURE CAPABILITY – NO BACKUP**

*"Polar Vortex"* Compatible: *Constant Capacity at Cold Temperatures, No Backup System Needed.* 



Monovalent System

-150°F (-100°C) demonstrated at Oak Ridge National Lab



# **THERMOLIFT: NO REFRIGERANTS, NO HFCs, SAFE**

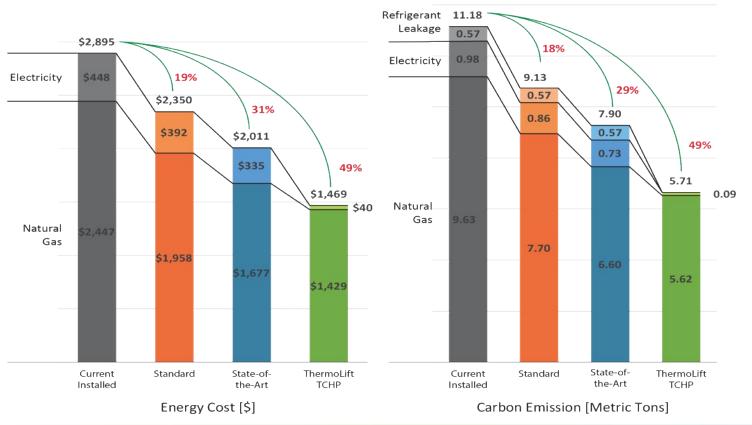
- ThermoLift reduces by 100% the greenhouse gas impact of refrigerants used by current technology ("Vapor Compression") or approximately 6 tons of CO2e over the units lifetime (due to no refrigerants; ThermoLift mitigates another 104 tons of greenhouse gas equivalents due to energy efficiency or 110 tons total).
- ThermoLift's Thermal Compression (TC-Cycle) uses No Refrigerants, No HFCs.
- Vapor Compression Heat Pumps globally used for AC, Refrigeration and also Heating, require refrigerants and use HFCs\*.
- HFCs by themselves, left unchecked, are predicted to contribute to a 0.5° C rise in global temperatures by 2100\*\*.

| Appliance Type ****                              | Current Leak<br>Rate | Leak Rate Effective<br>1/1/2019 |
|--------------------------------------------------|----------------------|---------------------------------|
| Industrial process<br>refrigeration <sup>a</sup> | 35%                  | 30%                             |
| Commercial refrigeration                         | 35%                  | 20%                             |
| Comfort cooling                                  | 15%                  | 10%                             |
| All other appliances                             | 15%                  | 10%                             |

HFCs, used mainly in refrigeration, air conditioning and heat pump equipment, are thousands of times more harmful to the climate than CO2. In response to the rapid growth of HFC emissions, the 197 parties to the Montreal Protocol adopted the Kigali Amendment in 2016 to reduce gradually their global production and consumption.\*\*

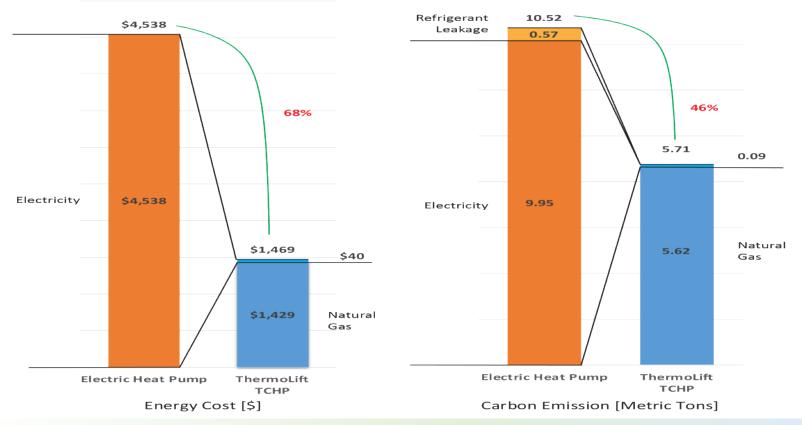
| (EY FIGURES ***                                                                                                    |                                                                   |                                                        |                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,430x                                                                                                             | 10-15%                                                            | 29 years                                               | 5.6 billion                                                                                                                                                                 |
| The most abundant HFC is<br>1,430 times more<br>damaging to the climate<br>than carbon dioxide per<br>unit of mass | Emissions of HFCs are<br>growing at a rate of 10-<br>15% per year | HFCs remain in the<br>atmosphere for up to 29<br>years | The global stock of air<br>conditioners in buildings<br>will grow to 5.6 billion by<br>2050, which amounts to<br>10 new units sold every<br>second for the next 30<br>years |

#### ThermoLift Safety, Installation, Operations Benefits:


- Simplified operation & maintenance due to no refrigerants.
- Infinite zoning capability.
- No restrictions on cooling line lengths.
- No dangerous alternatives with indoor building code restrictions, such as flammables, ammonia, or high pressure CO2.
- ThermoLift resolves ASHRAE 15 & 34 compliance installation issues for safety.
- No EPA 608 installer certification needed.



\* HFCs – Hydrofluorocarbons, are the most common type of refrigerant chemicals.


- \*\* Kigali Agreement: https://ec.europa.eu/clima/news/eu-ratifies-kigali-amendment-montreal-protocol\_en
- \*\*\* http://ccacoalition.org/en/slcps/hydrofluorocarbons-hfc
- \*\*\*\* EPA allowed refrigerant leakage rates: https://www.epa.gov/section608/stationary-refrigeration-leak-repair-requirements

# Hartford, CT – Residential Energy & CO2 Reduction





## Hartford, CT – Residential Heat Pump Comparison

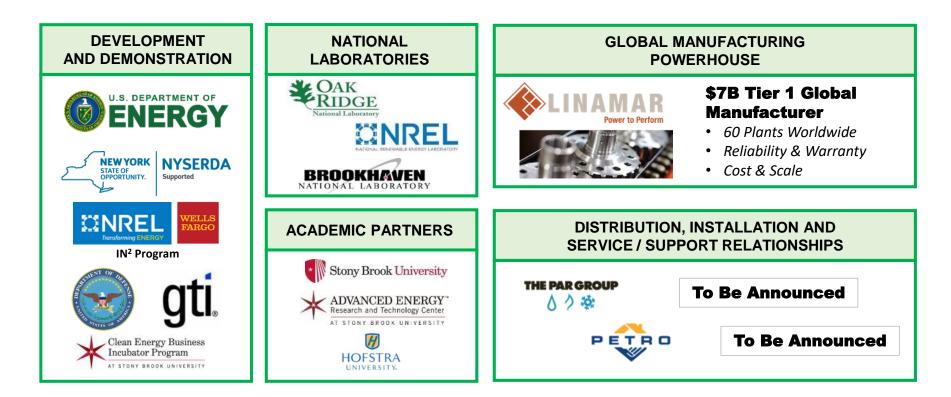




## **ThermoLift Competitive Landscape**

|                                                        | ThermoLift<br>TCHP™ | Condensing<br>Boiler | High<br>Efficiency AC<br>(13 SEER) | Air Source<br>Heat Pump<br>(Minisplit VRF) | Water<br>Source Heat<br>Pump | Geothermal<br>Source Heat<br>Pump | Absorption<br>Heat Pump |
|--------------------------------------------------------|---------------------|----------------------|------------------------------------|--------------------------------------------|------------------------------|-----------------------------------|-------------------------|
| Heating                                                |                     |                      | •                                  |                                            |                              |                                   |                         |
| Cooling                                                |                     | •                    |                                    |                                            |                              |                                   |                         |
| No Refrigerants                                        |                     |                      | •                                  |                                            |                              |                                   | •                       |
| Renewable Energy                                       |                     |                      | •                                  |                                            |                              |                                   |                         |
| Hot Water                                              |                     |                      | •                                  |                                            |                              |                                   | •                       |
| Efficient Heating<br>below 0℃ (32℉)<br>Ambient Outdoor |                     |                      | •                                  |                                            |                              |                                   |                         |




# **ThermoLift System Benefits**



| <ul> <li>Consumer Benefits:</li> <li>✓ Lower Operating Cost</li> <li>✓ High Performance</li> <li>✓ Standard Installation Cost</li> <li>✓ Renewable Energy</li> <li>✓ Compact / Retrofit</li> <li>✓ Support Fuel Switching from Oil</li> </ul> | <ul> <li>Non-Pipe Solution for Capacity<br/>Constraints:</li> <li>✓ Expand Capacity through 50%<br/>End Use Efficiency</li> <li>✓ No New Infrastructure Cost</li> <li>✓ Address Seasonal Constraints<br/>and Moratoriums</li> </ul> | <ul> <li>Cold Climate High Efficiency:</li> <li>Constant Capacity even at Very<br/>Cold Outside Temperature</li> <li>No Need for Backup Heating</li> <li>Meet Peak Demand Heating<br/>without Additional Capacity -<br/>"Polar Vortex" Compliant</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Demand Response:</li> <li>✓ Gas Demand Response</li> <li>✓ Variable Performance Range</li> <li>✓ High Efficiency Modulation<br/>without Cycling On/Off</li> </ul>                                                                    | <ul> <li>No Refrigerants:</li> <li>✓ 1,500x – 2,000x Worse<br/>Greenhouse Gas Impact</li> <li>✓ Being Phased Out</li> <li>✓ Leak Rates</li> </ul>                                                                                   | <ul> <li>Decarbonizing through Energy<br/>Efficiency:</li> <li>✓ Lower Carbon Footprint</li> <li>✓ Cost Effective GHG Reduction</li> <li>✓ Important Solution towards<br/>Achieving Mandates, Regional<br/>GHG &amp; Climate Impact Targets</li> </ul>      |



# PARTNERS, COLLABORATION, SUPPORT





# **STRONG IP PORTFOLIO & RECOGNITION**

#### RECOGNITION

- DOE #1 Ranked HVAC Technology
- NREL IN<sup>2</sup> Incubator
- IEA Heat Pump Publication
- DOE Report on HVAC Technologies
- 2015 Long Island's Innovator of the Year
- American Gas Magazine
- NREL Industry Growth Forum
- Stony Book University Start-Up of the Year
- CEBIP Incubator Company of the Year

#### GRANTS

ThermoLift

- Department of Energy
- NYSERDA
- Gas Technology Institute
- Wells Fargo IN<sup>2</sup>
- NYS Manufacturing

#### **STRONG INTELLECTUAL PROPERTY PATENT PORTFOLIO**

17 patent families; 15 patents issued; 31 patents pending. Trademark protection has been filed and allowed.

| PATENT FAMILIES                                                                                    | DATE       | STATUS                                                 |
|----------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------|
| Heat Pump with Electromechanical Actuated<br>Displacers                                            | 4/11/2013  | Issued: US, China, Canada Filed: Europe, India         |
| Combination Solar and Combustion Heater                                                            | 10/18/2013 | Issued: Canada Allowed: China Filed: Europe, India, US |
| A Compact Heat Exchanger for a Heat Pump                                                           | 11/25/2013 | Filed: China, Germany, UK, US                          |
| A Combination Heat Exchanger and Burner                                                            | 12/4/2013  | Filed: China, Canada, Europe, India, US                |
| A Four-Process Cycle for a Vuilleumier Heat Pump                                                   | 11/18/2014 | Allowed: China Filed: Canada, Europe, Korea, US        |
| A Vuilleumier Heat Pump Having a HX Located<br>Between the Displacers                              | 2/21/2015  | Filed: China, Denmark, US                              |
| A Heat Exchanger                                                                                   | 6/10/2016  | Filed: US                                              |
| A Spring for an Electromagnetic Actuator System                                                    | 9/15/2016  | National phase filing 3/15/2018                        |
| Dome for a Thermodynamic Apparatus                                                                 | 10/15/2016 | National phase filing 4/15/2018                        |
| Gas Spring and Bridge for a Heat Pump                                                              | 10/18/2016 | National phase filing 5/18/2018                        |
| Mechatronic Drivers in the Cold End of a Heat Pump                                                 | 10/18/2016 | National phase filing 5/18/2018                        |
| A Regenerator                                                                                      | 3/16/2016  | Filed: US                                              |
| Spiral Extruded Heat Exchanger                                                                     | 2/22/2017  | National phase filing 8/22/2018                        |
| A Linear Actuation System Having Face Coils and Side Coils for Armature Travel Assist              | 4/8/2017   | File PCT or national phase by 4/8/2018                 |
| A Linear Actuation System Having Side Stators and a Permanent Magnet Armature                      | 4/24/2017  | File PCT or national phase by 4/24/2018                |
| Centrally-Located Linear Motors for Driving Displacers<br>in a Thermodynamic Apparatus Regenerator | 9/25/2017  | File PCT or national phase by 9/25/2018                |

### **WORLD CLASS LEADERSHIP**



**Paul Schwartz** CEO, Co-Founder

20+ years of experience in finance, investment banking.



Prof. Dr.-Ing. Peter Hofbauer President, Co-Founder Former VP Viessman.

European Environmental Award,

Former Global Head of Engine & Powertrain VW



Robert Catell Board of Directors

Former Chairman of National Grid (US) and CEO of KeySpan

Chairman of the American Gas Association and US Energy Association



Steve Winick Board of Directors

Partner at Topspin Partners

Former CTO of Honeywell's \$2B Home Security Group



David Parks, PhD Board of Directors

> HVAC Industry Leader

Former C-Level Positions in HVAC including Carrier, Haier America and Goodman

25 Full Time Team Members, including 9 PhDs, plus Extensive & Active Senior Advisor Network



# **THERMOLIFT: Energy Efficiency Gamechanger**

### Advanced Innovation to Meet Real Needs of NE Region:

- Gas-Powered Air Source Heat Pump for Heating & Cooling
- DOE #1 Ranked HVAC Technology
- Up to 50% Reduction in Energy Use & Greenhouse Gas Emissions
- Deliver Significant Consumer & System Benefits
- No Refrigerants

### Seeking:

- Rebate Program Participation
- Installation Incentives & Support
- Partnerships, Collaborations, Investors





# **THANK YOU !**

#### **QUESTIONS ?**



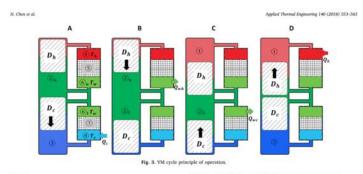
#### **Paul Schwartz, CEO**

<u>pschwartz@tm-lift.com</u> +1-631-779-1370



**Stony Brook Office** 1000 Innovation Road Stony Brook, NY 11794

#### SUPPLEMENTAL SLIDES




ThermoLift at OGCI Climate Initiative, Houston, 2019

Livonia Office 31572 Industrial Road, Suite 200 Livonia, MI 48150

## **Peer Reviewed Principles of Operation**

#### Detailed thermodynamic engineering analysis in Applied Thermal Engineering Journal



(1)

#### Table 2 Accumptions for the model

| Component          | Temperature in<br>component<br>(constant) | Gas entering                      | Gas leaving                            | Heat<br>flow in<br>one<br>cycle |
|--------------------|-------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------|
| Hot HX @           | 76                                        | $T_1 \odot {\rightarrow} 0$       | $T_{\pi} \equiv \rightarrow 0$         | $Q_h$ (in)                      |
|                    |                                           | $T_h \otimes \rightarrow \otimes$ | $T_{h} \equiv -\infty$                 |                                 |
| Warm HX @          | $T_{m}$                                   | $T_2 \otimes \rightarrow \otimes$ | $T_{\sigma} \approx \rightarrow 0$     | Q <sub>n</sub> (out)            |
|                    |                                           | T. 0-0                            | $T_{\alpha} \oplus \rightarrow \oplus$ |                                 |
| Cold HX ®          | T <sub>c</sub>                            | $T_5 \otimes \rightarrow \otimes$ | 7, 00-02                               | Q; (in)                         |
|                    |                                           | $T_c \oplus \rightarrow 0$        | T. 0-+3                                |                                 |
| Hot Regenerator ©  | $T_{h} + T_{e}$                           | $T_h \oplus \rightarrow \infty$   | $T_{\pi} \otimes \rightarrow 0$        | 0                               |
|                    | 2                                         | T_ 0-0                            | 7. 0-0                                 |                                 |
| Cold Regenerator @ | $X_{H} + X_{i}$                           | T_ 0-0                            | Z C-8                                  | 0                               |
|                    | 2                                         | T. 0D                             | $T_{ac} \odot \rightarrow \odot$       |                                 |

 $COP = \frac{T_w(T_b - T_c)}{T_w(T_b - T_c)}$  $T_{h}(T_{n}-T_{n})$ 

#### 2.2. Non-ideal adiabatic model (NAM) assumptions and approach

#### The model assumptions are stated as follows:

- (a) The gas chambers (0, 0, 0 in Fig. 3) are adiabatic. Their temperatures, T1, T2 and T3 will vary as the cycle proceeds.
- (b) The HXs (0, 0, 0) are assumed to be ideal, isothermal heat reservoirs. They have a finite volume and permit heat flow. (c) The regenerators (3, 3) are also assumed to have a constant average
- temperature based on the average of the inlet and exit temperatures.
- (d) All mechanical motion is frictionless.

----

(e) There is no internal heat leakage by conduction in the machine. (f) The helium behaves as an ideal gas.

Note that the temperature of the gas leaving the HXs and regenerators depends on the direction of the flow. Table 2 summaries the heat flows and the inlet/exit temperatures for the HX regenerators, depending on the direction of the flow.

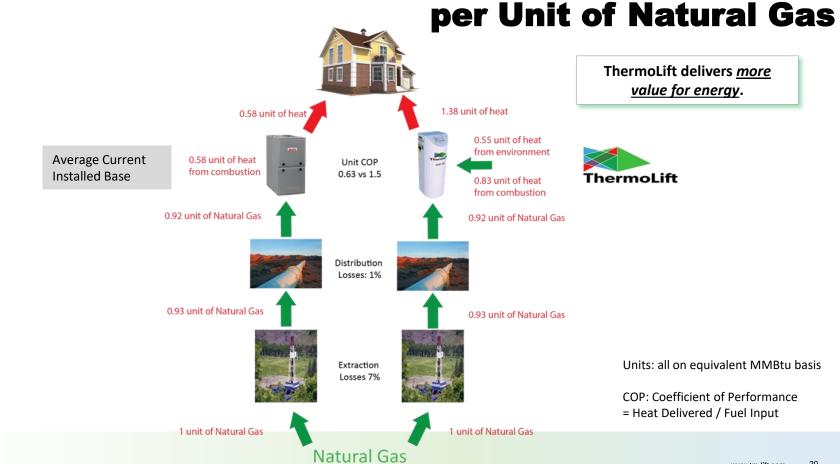
Contents lists available at ScienceDirect Applied Thermal Engineering journal homepage: www.elsevier.com/locate/apthermeng **Research** Paper Performance analysis of a free-piston Vuilleumier heat pump with dwellbased motion Hanfei Chen<sup>a</sup>, ChihChieh Lin<sup>b</sup>, Jon P. Longtin<sup>a,\*</sup> \* Department of Mechanical Engineering, Stony Brook University, NY 11790, USA 1º ThermoLift, Inc., Stony Brook, NY 11790, USA

Applied Thermal Engineering 140 (2018) 553-563

H. Chen et al. Applied Thermal Engineering 140 (2018) 553-563 - - - ---manine Calif. ---- Cald 0.5 1.5 2 2.8 0.5 1.5 2.5 Volume (L) Volume (L) Fig. 8. PV diagram of S-motion and D-motion

| No | Gase     | Hot input<br>(kW) | Warm output<br>(hW) | Cold input<br>(kW) | Heating COS |
|----|----------|-------------------|---------------------|--------------------|-------------|
| 1  | 5-motion | 4.93              | 11.04               | 6.72               | 2.36        |
| 1  | D-motion | 6.44              | 14.95               | 8.42               | 2.31        |

Where  $\mu$  is density,  $\nu$  is the average gas velocity, L is the regenerator length, fa is the friction factor and da is the hydraulic diameter of the regenerator.


4. Driving-rod PdV work. A cylindrical rod is attached to each displacer for motion control, and to provide alignment in the cylinder bore. The rods produce a small amount of PdV work as the dis3.1. Comparison of D-motion and S-motion

The hot and cold displacer positions are shown for both S-motion and D-motion over one complete cycle in Fig. 5. By convention, the results for one complete FVHP cycle are expressed in terms of an equivalent crankshaft angle ranging from 0' to 360' [4,19]. The amplitude of all motions is ± 25 mm. The model was run using the TL-EVHP specifications from Table 1 for both cases.

The D-motion is realized by a closed-loop control system consisted of springs and electromagnets. Proper spring configuration ensures that the displacer will move to ± 25 mm of the chamber at the end of each phase with a minimal energy input. Once the displacer comes to rest, an electromagnet holds the displacer in position during its dwell cycle. Only a small amount of electricity required, since the distance between the displacer and the electromagnet is small. The energy required to overcome friction and viscous effects in the helium comes from the small amount of rod N/V work discussed above. The machine can also be fitted with a small marnet-coil assembly on one of the displacers to produce the required electrical energy to operate the machine. This 

| hermoLift |  |
|-----------|--|

# **ThermoLift Delivers 2.4x More Heat**





## **ThermoLift Renewable Energy 'Capacity Factor'\***

|                         | Wind  | Solar | ThermoLift<br>Heat Pump | Electric Heat<br>Pumps                                |
|-------------------------|-------|-------|-------------------------|-------------------------------------------------------|
| Capacity Factor         | 37%** | 26%** | 100%***                 | ~ 50%***                                              |
| Renewable<br>Energy     | 100%  | 100%  | 50% - 100%              | 50% - 100%                                            |
| Refrigerants or<br>HFCs | No    | No    | No                      | Yes, Refrigerants<br>@ up to 2,000x<br>CO2 GHG Impact |

\* Though Heat Pumps are renewable energy devices, calculating their Capacity Factor (as with wind and solar) is not yet standardized. This analysis considers Heat Pump Capacity Factor (for Heating) as the % of time that the device delivers Renewable Energy for Heating (i.e. does not rely on a secondary heat source, or does not utilize renewable energy for heating) during heating days, following the similar logic for wind and solar. \*\*US Energy Information Administration (EIA), 2018

\*\*\* Calculated from National Oceanic and Atmospheric Administration (NOAA) Data for 2018, Albany Airport Weather Station Temperature Data



### **ThermoLift Comparative Analyses**

- The building energy simulations are performed using EnergyPlus. EnergyPlus<sup>1</sup> is DOE's flagship whole building energy modeling engine. It is certified by ASHRAE 140: Standard Method of Test for the Evaluating of Building Energy Analysis Computer Programs.
- The residential case refers to a typical standalone residential house complying with IECC 2006 code. This building model is developed by DOE under Building Energy Code Program<sup>2</sup>.
- For carbon reduction, the direct carbon emission from natural gas end use and indirect carbon emission from electricity consumption are calculated based on *Greenhouse Gas Emissions*<sup>3</sup> from Energy Star Portfolio Manager. Due to the weather related nature of air conditioner, its consumption is regarded as non-baseload and calculated accordingly.
- Other data based on Energy Information Agency (EIA) and similar databases. Further details available upon request.

3. Energy Star Portfolio Manager: https://www.energystar.gov/buildings/tools-and-resources/portfolio-manager-technical-reference-greenhouse-gas-emissions



<sup>1.</sup> EnergyPlus: <u>https://www.energy.gov/eere/buildings/downloads/energyplus-0</u>

<sup>2.</sup> DOE Building Energy Codes Program: <u>https://www.energycodes.gov/development</u>