Risk 101 and decision Making in the face of uncertainty

Dalia Patino Echeverri
Duke University

NECPUC

May 22, 2018

Any decision on power sector capacity planning involves trading one risk for another

Planning for small probability catastrophic events is hard

- How low is the probability?
- How bad can be the losses?
- Actions can be directed towards
- Reducing the probability of the events

How much do we value this reduction of risk ?

Who should pay?

- Reducing the losses when the events occur
- But these actions...
- Are not unique
- Require large \& irreversible investments
- Divert economic and institutional resources from other needs
- Reduce the ability to hedge against other risks

Who is in charge?

Example: National Academies
Consensus 2017:
nobody has a primary responsibility for building resilience to LLD-outages

- Lead to uncertain outcomes
- May create path dependencies
- Decisions today determine the availability of future chotees ULKe

Discussing about these risks and any related decisions may be more productive if we make an effort to share our understanding of uncertainty, risk and the tools to manage it

What is risk?

An individual is jumping from an airplane without a parachute? Does he face a risk?

A risk implies both:

- Exposure to an undesirable outcome

To understand risks it is necessary to characterize both!!

- Uncertainty about the chances of its occurrence

Duke Emivioween

Characterizing Uncertainty

1. Define random variable
2. Enumerate all possible outcomes
3. Determine probabilities of outcomes

Tqke one ball with your eyes closed

1. $X=$ color of ball picked up at random
2. X may be blue or red
3. Probability that X is blue is 50%

Probability that X is red is 50%
Uncertainty
Electricity demand per household in
Augusta, on a Sunday in
ugusta, on a Sunday in July 201
when temperature is $<80 \mathrm{~F}$

1. X = color of ball picked up at random
2. X may be blue or red
3. Probability that X is blue is ?\%

Probability that X is red is ?\%
Deep uncertainty
Repeat experiment several times and try to infer the probability

Frequentist view:

"Probability of an event is the frequency with which it occurs in a long sequence of similar trials"

1. X = color of ball picked up at random
2. X may be blue, red, yellow, green, ..
3. Probability that X is blue is ?\%

Probability that X is red is ?\%
Probability that X is yellow is ?
Deeper uncertainty
uke acouviscoloove me ENVIRONMENT

Example random variable

Z = Price of natural gas in the U.S. in January 2030

1. What kind of random variable is this?
2. What is the probability that it will be $<\$ 20 / \mathrm{MMB} t u$?
3. What is the probability that it will be $<\$ 5 / \mathrm{MMBtu}$?
4. Can we use the frequentist approach to find a probability?

Bayesian view:
"Probability of an event is the degree of a belief a person has that it will occur"

There is no experiment we can conduct to infer the probability

We can develop a model that explains NG prices as a function of other thousand variables but...
Duke ENVIRONMENT

DRAFT

EIA Natural Gas Projections, 1979-2012

Energy Information Administration - Annual Energy Outlook - Reference Case or Equivelent - Average Delivered Price - All Sectors

${ }^{\$ 22}$ Henry Hub Natural Gas Price
 ${ }_{20}$ dollars per million Btu

12 Historical spot price

Jul 2013
Jan 2014
Jul 2014
Jan 2015
Jul 2015
$\$ 6$ Note: Confidence interval derived from options market information for the 5 trading days ending Apr. 3, 2014. Intervals not calculated for months with sparse trading in near-the-money options contracts.
\$4 Source: Short-Term Energy Outlook, April 2014.

How to deal with risk?
 - Assess risk
 - What is the risk of an large area outage of long duration next year?
 - Define possible causes of LLD outages
 - Assess probabilities of those causes
 - Estimate area affected *Unless completely deterministic, refrain from point
 - Estimate duration
 estimates
 *Estimate as ranges or probability distributions
 - Assess opportunities for ristist reduate zanges or

- What are possible "insurance" alternatives
- To reduce the probability of occurrence
- To reduce the area affected
- To reduce the duration of the outage
- Assess costs of risk reduction
- What is the cost of the different alternatives
- What are associated alternatives
- Assess your own attitudes towards risk
- Are you comfortable paying a premium to reduce risk?

What is your preference when trading risk and expected
What is your preference when tr
return ？
\square
\square －

\qquad
\qquadrad

```
d
```

 －
reading risk and expected \square

\square

Which lottery do you prefer? We will toss a fair coin

1. You get $\$ 28$ if tails, $\$ 28$ if heads
2. You get $\$ 24$ if tails, $\$ 36$ if heads
3. You get $\$ 20$ if tails, \$44 if heads
4. You get $\$ 16$ if tails, $\$ 52$ if heads
5. You get $\$ 12$ if tails, $\$ 60$ if heads
6. You get $\$ 2$ if tails, $\$ 70$ if heads

What is your preference when trading risk and expected return?

We have different preferences

We choose different tradeoffs between risk and expected value of return

How should these choices be made on behalf of the public?

Hard question because the option of "not playing the lottery" (i.e., not making a decision) is not available !

Need to use tools of risk analysis

- to think better about the choices
- to inform a deliberative-participatory process

Tools of risk analysis teach us we

should:

1. Determine uncertainties and formulate probabilities
2. Use this uncertainty characterization and

Replacing uncertainty
with the average or most likely value leads to suboptimal choices find the strategy that:
-Minimizes risk without exceeding allocated budge Or

> Not easy to agree on the risk measure, or the approach but we must try
-Minimizes cost for a desired level or risk-reduction
3. Iterate over 1 and 2
4. Identify strategies that although may not be optimal under any one scenario, are acceptable under all of them

Because
probabilities are
"subjective
beliefs"
ROBUST strategies !!

Thank you!

dalia.patino@duke.edu

Duke mansanome ENVIRONMENT

