

Metrics for Resilience in Theory and in Practice – A Workshop

Joseph H. Eto

Lawrence Berkeley National Laboratory

70th Annual NECPUC Symposium, Cape Neddick, ME May 22, 2018

- Part 1 (25 min) Setting the stage Eto
 - Distinguishing between reliability vs. resilience
 - DOE's Grid Modernization Initiative's grid resilience metrics
 - Sandia National Labs' grid resilience planning case study for the City of New Orleans
 - A structured approach for resilience planning
- Part 2 (50 min) An *interactive* application
 - Avangrid's Coastal Substation Flood Mitigation Study by David Bradt, Avangrid (CT) (20 min)
 - Directed Q/A led/moderated by Joe Eto with audience participation (30 min)

Reliability vs. Resilience

	Reliability	Resilience		
Common features/	Routine, not unexpected, normally	Infrequent, often unexpected,		
characteristics	localized, shorter duration interruptions of	widespread/long duration power		
	electric service	interruptions, generally with significant		
		corollary impacts		
	Larger events will make it into the local			
	headlines	Always front page news, nationally		
Metrics	Well-established, annualized (SAIDI, SAIFI,	Not standardized, event-based (number of		
	MAIFI), with provisions for "major events"	customers affected; hours without electric		
		service)		
	Not focused on non-electricity impacts			
		Routinely include non-electricity impacts		
		(e.g., costs to firms; health and safety		
		impacts)		
Actions to improve	1. Plan and prepare;	No qualitative difference		
	Manage and endure event(s);			
	3. Recover and restore; and	But generally larger in scope/cost (see below)		
	4. Assess, learn, and update plan.			

Reliability vs. Resilience

	Reliability	Resilience		
Entities involved in decision making	Electric utility and its regulator/oversight board, primarily	Electric utility and regulator		
		But also and routinely in conjunction with parties that have responsibilities for other critical infrastructures, including local/regional/state/federal agencies/authorities, and communities/elected officials		
Factors affecting decision making	Actuarial records on frequency of exposure – widely understood risks: insurable	No actuarial basis to establish likelihood of occurrence – widely varying perceptions of risk/exposure: un-insurable		
	Well-understood/tested practices/approaches	Limited opportunities to "test" strategies; emphasis on design standards		
	Understood to be an expected cost of doing business	Large dollar amounts/extraordinary expenditures may require special approval/vote		
		Delitical independents accordial		

Political judgements essential

Landscape of existing and proposed metrics **Resilience**

n

Existing (metrics)	Existing (data needed)
Cost of recovery	
Jtility revenue lost	outage cost for utility (\$)
Cost of grid damage	total cost of equipment repair
Cost per outage	

Resilience		
Proposed Metrics	Proposed (data needed)	
Cumulative customer-hours of outages	customer interruption duration (hours)	
Cumulative customer energy demand not served	total kVA of load interrupted	
Avg (or %) customers experiencing an outage during a specified time period	total kVA of load served	
Cumulative critical customer-hours of outages	critical customer interruption duration	
Critical customer energy demand not served	total kVA of load interrupted for critical customers	
Avg (or %) of critical loads that experience an outage	total kVA of load severed to critical customers	
Time to recovery		
Cost of recovery		
Loss of utility revenue	outage cost for utility (\$)	
Cost of grid damages (e.g., repair or replace lines, transformers)	total cost of equipment repair	
Avaided outpro cost	total kVA of interrupted load avoided	
Avolued outage cost	\$ / kVA	
Critical convices without power	number of critical services without power	
childer services without power	total number of critical services	
Critical convices without newer after backup fails	total number of critical services with backup power	
cifical services without power after backup fails	duration of backup power for critical services	
Loss of assets and perishables		
Business interruption costs	avg business losses per day (other than utility)	
Impact on GMP or GRP		
Key production facilities w/o power	total number of key production facilities w/o power (how is this different from total kVA interrupted for critical customers?)	
Key military facilities w/o power	total number of military facilities w/o powe (same comment as above)	

A structured approach to resilience planning

- What resilience threat(s) is the focus?
- What aspect(s) of the threat(s) is of concern?
 - Can we measure the extent to which these concerns are or will be addressed? How will we know if we have made things better or if they are getting worse (in the absence of an actual threat)
- What is our design standard for addressing these concerns?
- What are the pro's and con's of available alternatives for meeting these standards?
 - What is the lowest cost option?
 - What, if any, additional benefits might they provide? What are these worth?
 - Are there options for recourse?

Exceptional service in the national interest

FNFRG

Grid Analysis and Design for Energy and Infrastructure Resilience in New Orleans, LA

Robert Jeffers, Michael Hightower, Michael Baca, Nancy Brodsky, Amanda Wachtel, Sarah Walsh, Bill Fogleman

GMLC Security & Resilience Project: Sandia New Orleans, LA

Results of Hurricane Inundation Modeling for New Orleans and surrounding regions

New Orleans is using technical assistance from Sandia and Los Alamos to determine grid investments that will improve their resilience to storms.

Consequence-focused Scenarios

A high category 2 or low category 3 may lead to worst reasonable consequence in NOLA

- If it stalls and drops >20" of rain quickly
- The city does not call for a mandatory evacuation
- Address potential worst case dewatering pump performance

Parameter	Track 1: Katrina 2005	Track 2: Unnamed Storm Sept. 1947	
Storm Category	High Cat 2; surge <20 ft		
	Mid-range Cat 3; surge ?		
	Low – mid range Cat 4; surge likely > 24 ft		
Rainfall	20 inches over ~ 24 hours		
Drainage Pumps	Performing at 50% capacity		

Population movement to dry areas

Population Density/Square Mile

Baseline Population 2014 data from the 2010-2014 American Community Survey, Table S0101, Orleans Parish

Decentralized Infrastructure and Inundation 🖬

Note: purpose of inundation analysis is to guide energy system improvements, not to be used for facility elevation studies

Area size of 1000 ft x 1000 ft

Minimum of 4 buildings per microgrid

Avangrid (CT) May 22nd, 2018

Southwest Connecticut Coastal Flood Risk Assessment & Mitigation

Presentation to: NECPUC Annual Symposium

> David Bradt Director – Transmission Planning

Today

Objective:

Share Avangrid's recent experience with increasing flood risk threats along the SWCT coastline along with actions to date.

Background

Pequonnock S/S

Study / NE Stakeholder Process (2015 – 2016)

Risk Assessment

- A 50yr substation designed to the 100year flood level has a 40% chance of flooding over its useful life.
 - 5 stations at risk from single flood event could destroy 5 BES stations

Reference: Designing for Flood Levels Above the BFE After Hurricane Sandy (FEMA HSFE60-13-0002, 0003, April 2013)

Establish Criteria

Industry, Regional, Sea Level Rise

Legacy Stations

100year flood level

New or Modified

Higher of:
a) "100-year flood level + 2
feet" or,
b) "500 year flood level"
→ plus 1ft coastal SLR consideration

<u>Alternative</u> <u>Development</u>

- Raise equipment
- Flood wall system
- Raise/Rebuild
- Relocate inland
- Address Asset
 Condition Needs

Vel+2 7el R Us 100 Vel + 2 R Vel + 2 V

Study

Southwest Connecticut Alternatives & Recommendations (Examples)						
Mitigation Strategies		Congress St	Pequonnock	Singer	Grand Ave/Mill River	East Shore
		Solution	Solution	Solution	Solution	Solution
		Alternative Cost	Alternative	Alternative	Alternative	Alternative
		(\$M)	Cost (\$M)	Cost (\$M)	Cost (\$M)	Cost (\$M)
1	Raise Impacted Equipment	Infeasible (Control Building Impacted)	Infeasible	Infeasible	Infeasible	\$0.33
2	Perimeter Flood Wall System	\$16.50	Not pursued	\$12.90	\$17.50	\$21.00
3	Raise and Rebuild "Adjacent"	\$88.30	\$171.30	\$194.60	\$88.30	Not pursued
4	Raise and Rebuild "In-Place"	Not pursued (Cost exceeds Rebuild "Adjacent")	\$269.60	Not pursued	Infeasible	Not pursued
5	Relocate Inland	\$233.30	\$246.70	Infeasible	\$207.40	Not pursued
6	Address Asset Condition Needs (non-flood related)	None Identified	Included in above costs	None Identified	Included in above costs	None Identified
Recomm Strate	nended Mitigation 2gy - Highlighted	\$16.5	\$171.3	\$12.9	\$17.5	\$0.3

Total Estimated Solution Costs: \$218.5

Execution of Plans (in progress)

Continued Evidence of Coastal Flood Pattern Changes

2022 ISD

<u>Mitigation Plans</u> <u>now Underway</u>

- Raising Equipment
- Flood wall systems
- S/S Rebuild

A structured approach to resilience planning

- What resilience threat(s) is the focus?
- What aspect(s) of the threat(s) is of concern?
 - Can we measure the extent to which these concerns are or will be addressed? How will we know if we have made things better or if they are getting worse (in the absence of an actual threat)
- What is our design standard for addressing these concerns?
- What are the pro's and con's of available alternatives for meeting these standards?
 - What is the lowest cost option?
 - What, if any, additional benefits might they provide? What are these worth?
 - Are there options for recourse?