

Distribution Integrity Management Risk Management for Natural Gas Pipeline Safety

Mr. Chris LeBlanc

Vice President, Gas Operations

Telephone: (603) 294-5166

Email: leblanc@unitil.com

Agenda

- 1. Company Overview
- 2. DIMP Background
- 3. DIMP Challenges
- 4. Key Elements of DIMP

ABOUT UNITIL

Company Overview

- Natural gas and electric distribution utility with operations in three states serving ~182,000 customers
- Growing operations and customer base
 - Robust natural gas system expansion
 - Nearly 500 full-time employees with dual storm roles
- We provide energy for life, safely and reliably delivering natural gas and electricity in New England

Genesis of Integrity Management

- Bellingham, WA Liquid Transmission Line Incident on June 10, 1999, caused the fatalities of 3 young men, (2 boys)
- Carlsbad, NM Gas Transmission Line Incident on August, 2000 caused the fatalities of 12 family members camping.
- These two incidents were the prime movers in the passing of IM for hazardous liquid pipelines in 2000 and then gas transmission pipelines ("TIMP") in 2003.

Genesis of Integrity Management

S Unitil

- From 1986 to 2006 there were 63
 fatalities resulting from transmission
 pipeline incidents.
- From 1986 2006 there were **349 fatalities** resulting from gas distribution incidents.
- PHMSA concluded an investigation in 2005 and determined that TIMP regulation was impractical to apply and diversity amongst operators made prescriptive regulation also impractical
- PHMSA concluded an investigation in 2005 and recommended a <u>risk-based</u> integrity management program for distribution operators.

Carlsbad, NM August of 2000

The Nature of Distribution Incidents

Timeline

- May 2005 Report to Congress titled
 "Assuring the Integrity of Gas Distribution
 Pipeline Systems"
- June 5, 2008 Notice of Proposed Rulemaking, Federal Register / Vol. 73 36015
- <u>December 4, 2009</u> Final Rule Published,
 Federal Register /Vol. 74 63906
 49 CFR § 192 Subpart P Gas Distribution
 Pipeline Integrity Management
- <u>August 2, 2011</u> Required gas distribution operators to have developed and implemented an integrity management program.

Key DIMP Takeaways

- Inspection techniques used for transmission integrity management (TIMP) is not technically feasible for distribution
- 2. Diversity amongst distribution operators and systems (1000 +) made it impractical to establish prescriptive requirements and instead focused on a high-level flexible regulation
- 3. DIMP instead focused on a high-level flexible performance based regulation.

Challenges with Implementation

Regulators

- Inspection Challenges A
 High-Level Performance
 based regulation is
 challenging for regulators
 to inspect.
- 2. <u>Time Intensive</u> -Inspections are time consuming because it requires a comprehensive review.
- 3. <u>Judgement</u> Inspectors are required to use judgement during inspections regarding compliance

LDC's

- Compliance Complexity –
 Ensuring compliance is more
 complex than adhering to
 prescriptive rules.
- Expectations State
 Jurisdictions having different
 expectations and DIMP
 requirements.
- 3. <u>Implementation</u> The balance between the implementation of DIMP mitigation measures and the increasing prescriptive regulations on the State level.

Successful DIMP Programs

- Code Compliance for Subpart P is only the Starting Point!!
 - Evaluate the intent of the code
 - Requires Self Assessment.
- Everyone in the Organization Must be Involved – Top to Bottom
- Safety Culture is Relevant
 - Doing the right thing at all times
 - Employee Ownership & Engagement
- Continuous Improvement
 - Not a regulatory exercise or book on a shelf.
 - A tool to analyze needs and progress

Assessing Maturity

7 Key Elements of DIMP

Distribution Integrity Management requires natural gas distribution companies to develop, write, and implement a risk management plan with the following elements:

- 1. Knowledge of Infrastructure
- 2. Identify Threats
- 3. Evaluate and Rank Risks
- 4. Identify and Implement Measures to Address Risks
- Measure Performance, Monitor Results, and Evaluate Effectiveness
- 6. Periodically Evaluate and Improve Program
- 7. Report Results

1 - Knowledge of Infrastructure 😂 Unitil

- § 192.1007: "An operator must demonstrate an understanding of its distribution system"
- The foundation of the program is <u>System Knowledge</u> which includes:
 - Asset Information (existing &new)
 - Environmental Factors (population, flood, wall to wall)
 - Past design, operations & maintenance
- Operators should use the intent of the code to determine what data should be collected.

Knowledge (Compliance vs Intent) 🦃 Unitil

- Compliance § 192.1007 (a)(5) Provide for the capture and retention of data on any new pipeline installed. The data must include, at a minimum, the <u>location</u> where the new pipeline is installed and the <u>material</u> of which it is constructed.
- Intent Operators need to evaluate there system and ensure that the data that is being captured is sufficient for existing and potential (i.e., future) threats.

Trace & Traceability

Knowledge Acquisition - Unitil

- Implemented GPD Data Collection
- All Newly Installed Components
- Existing Components when Exposed

Key Data	Examples	
Pipe Size & Sizing System	1" IPS	
Wall Thickness	SDR 11	
Product Name	Driscoplex	
Series	8100	
Pipe Material Designation	PE3408/PE4710	
Manufacturing Standard	ASTM D 2513	
Date of MFG	July 1, 2012	
Plant Code & Extrusion Line	KV-4 (Knoxville Tennessee)	
Resin Code	RN-B53m1	
Shift & Operator No.	04-201	
Unitil Installer	Employee No. 7066	
Operator Qualification	Scans Fusion Qualifications	

GPSThe Global Positioning System

2- Identification of Threats

Requirement - 2: Categorize threats to each gas distribution pipeline.

Consider reasonably available information to identify existing and potential threats.

<u>Code Required Threat Categories</u>

- corrosion
- natural forces
- excavation damage
- material, weld or joint failure
- equipment failure
- incorrect operation

Distribution System Annual 7100.1-1 Report

PART C - TOTAL LEAKS ELIMINATED/REPAIRED DURING YEAR					
CAUSE OF LEAK		-			
	Mains	Services			
CORROSION	4	86			
NATURAL FORCES	93	0			
EXCAVATION	0	8			
OTHER OUTSIDE FORCE DAMAGE	0	0			
MATERIAL OR WELDS	15	0			
EQUIPMENT	8	0			
OPERATIONS	0	15			
OTHER	9	20			
NUMBER OF KNOWN SYSTEM LEAKS AT END OF YEAR SCHEDULED FOR REPAIR					

Identification of Threats - Unitil

Primary DOT Cause

Secondary Cause Third Cause

Natural Forces
Excavation Damage
Outside Force Damage
Material Weld
Equipment Failure
Incorrect Operations
Other

Atm. Corrosion

Snow/Ice/Frost/Flood

Not Marked/One Call

Vehicle
Damage/Vandalism

Aldyl A/Mech Coupling

Operator Error

Bell Joints

No meter protection
Inadequate Meter protection
Snow removal
Frost
Falling Ice & Snow

3 - Evaluation and Ranking of Risk 🦃 Unitil

<u>Requirement - 3</u>: Evaluate the risks associated with the distribution pipeline system.

- Determine the relative importance of each threat and estimate and rank the risks posed to the pipeline.
- Consider the likelihood of failure associated with each threat, and the potential consequences of such a failure.
- Must Consider Potential Threats.

4 - Risk Mitigation

<u>Requirement</u>: Identify and implement measures to address risks.

- Determine and implement measures designed to reduce the risks from failure of the gas distribution pipeline.
- These measures must include an effective leak management program (unless all leaks are repaired when found).

Risk Mitigation

Risk Mitigation - What is it?

- Accelerated Actions "AA's"
 - Increased Leak Survey
 - Active leak re-check
 - Leak clearing
- Pipe Replacement Programs
 - Cast Iron Models
 - Bare Steel Models
- Enhanced Damage Prevention
 - High Risk Tickets
 - Monitoring Third Party Excavations
- Public Education & Outreach
- Training & Procedures

5 - Ensuring Program Effectiveness Unitil

<u>Requirement</u>: Measure performance, monitor results, and evaluate effectiveness.

- Establish a baseline to evaluate the effectiveness of the IM program.
- Identify any additional measures needed to evaluate the effectiveness of the IM program in controlling each identified threat.

"What gets measured, gets done."

6 & 7 Evaluate, Improve & Report 🦃 Unitil

Required frequency	Program Re-evaluation Element		
Required			
Annually	Update Baseline and on-going performance measures		
Required	Update Knowledge of System Characteristics, Environmental		
Annually	Factors and Threats		
As needed*	Update Threat Identification Process		
As needed*	Update Threat Identification		
As needed*	Update Risk Evaluation and Ranking Process		
As needed*	Update Evaluation of Risks		
As needed*	Update Risk Evaluation and Ranking Validation		
	Update Risk Evaluation and Ranking Process Improvement		
As needed*	Action Plans		
Required			
Annually	Update Leak Management Program Key Performance Metrics		
As needed*	Update Action Plans		

Performance Measures that Exceeded Baseline							
Region	Performance Measure	Actual Performance for Year	Established Baseline	Re-evaluation criteria			
Existing Date for Complete Program re-evaluation:							

Is a shorter timeframe for complete program re-evaluation warranted?:

