Achieving State Policy Goals in Markets

Robert Stoddard
on behalf of Conservation Law Foundation
NECPUC Annual Meeting
June 5, 2017
Disconnects between RTO markets and state policy goals

• RTO markets are *narrowly* efficient
 – Achieve reliability goals
 – At least cost

• Disconnect when state policies have:
 – Broader goals
 – Broader cost metrics

• Many goals have been brought into the markets by pricing
 – SO$_2$, NO$_x$ attainment

• But mixed success with other goals
 – RECs to attain RPS
 – RGGI to attain CO$_2$ goals
What’s gone amiss with market-based GHG achievement?

• Pricing can be too low to achieve policy
 – RGGI prices set by markets, but markets not calibrated to policy
• Market structure inadequate to support investment, e.g. RECs
 – Value depends on policies subject to year-to-year change
 – Fragmented, state-by-state demand
 – Poor basis for long-term capital financing
• Result: direct state action
 – To hold nukes (e.g. ZECs)
 – To procure renewables (e.g. MA 1,200 MW RFP)
Achieving state policies is critical to market health

Vicious Circle
- Markets fail to achieve state policies
- States achieve outside of markets
- Narrow RTO metrics
- RTO markets weakened

Virtuous Circle
- Markets achieve state policies
- States work mostly within markets
- Robust RTO metrics
- Robust RTO markets
Achieving State Policy in Markets

Personae Dramatis in constrained policy space

States
- Legislated policy
- Sovereignty

ISO
- J&R
- Efficient

Industry
- Financeable
- Sustainable

Design advanced by CLF, NextEra and Brookfield after extensive consultation with state and ISO-NE officials
Numerous proposals for achieving state policy

- Carbon adder in dispatch
- Forward market for clean energy
- Clean energy targets as side constraint in capacity market
- Time-dependent RECs (peak/off-peak)
Goals of Dynamic Clean Energy Market (DCEM) design

• Provide states new tool for achieving policy goals that:
 – Uses centralized markets
 – Achieves policies at least cost
 – Attracts and retains cost-effective resources
 – Creates visible, competitive prices
 – Fosters broad participation of innovative technologies & resources
 – Meets most, if not all, state requirements for clean energy
DCEM Design Concept

• Auction procures the clean energy attribute only
 – Clears MWh quantities of Carbon-Linked Incentives to Policy Resources (CLIPR)
• Products:
 – Base product: generic zero-emitting MWh, new and existing
 – Premium product(s): as required to implement specific state policy
• States or their agents provide demand bids (price & quantity)
 – Cleared quantities must be reoffered for additional nine years
• Auction closely precedes base capacity auction
 – Expected clean energy revenues are “in market” for MOPR
• New CLIPR improves on existing REC products:
 – Consistent definition across region (for “base” product)
 – Link hourly payment to carbon reduction
 – Potential for multi-year contract for new resources
DCEM mimics carbon price for policy resources
CLIPR refines traditional REC payment

Illustrative REC payments

- Flat payments in every hour
- Added incentive to offer negative energy prices, even during periods with excess energy

Illustrative CLIPR payments

- Payments scale in proportion to CO$_2$ emissions of marginal energy units
- Incentive to produce clean energy when and where it avoids the most CO$_2$ emissions
- No added incentive to offer at negative prices
Different CLIPR payments enhance opportunities for storage
Meeting the needs of differently situated states

<table>
<thead>
<tr>
<th>States with Strong Decarbonization Goals</th>
<th>Non-Participating States</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Market-based opportunity to purchase clean resources to meet goals</td>
<td></td>
</tr>
<tr>
<td>• Flexibility to define needs</td>
<td></td>
</tr>
<tr>
<td>• Avoid need for one-off negotiations and specialized contracts</td>
<td></td>
</tr>
<tr>
<td>• Reduced administrative burden for states</td>
<td></td>
</tr>
<tr>
<td>• Procured resources participate fully in RTO markets</td>
<td></td>
</tr>
<tr>
<td>– Avoids paying twice for capacity</td>
<td></td>
</tr>
<tr>
<td>– Avoids disrupting price formation in energy and capacity markets</td>
<td></td>
</tr>
<tr>
<td>• Sustainable revenue source to cost-effective clean energy resources eliminates need for “rescue missions”</td>
<td></td>
</tr>
<tr>
<td>• Better allocation of risk:</td>
<td></td>
</tr>
<tr>
<td>– Commodity risk to developers</td>
<td></td>
</tr>
<tr>
<td>– Regulatory risk to consumers</td>
<td></td>
</tr>
<tr>
<td>• Will not pay for costs of clean energy purchases of other states</td>
<td></td>
</tr>
<tr>
<td>• Will benefit from lower energy (and possibly capacity) prices from presence of policy resources</td>
<td></td>
</tr>
</tbody>
</table>
DCEM compared to carbon pricing

<table>
<thead>
<tr>
<th>DCEM</th>
<th>Carbon Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Market-set price to meet quantity targets determined by states</td>
<td>• Price set administratively in a FERC-approved tariff</td>
</tr>
<tr>
<td>• Benefits targeted narrowly on policy resources</td>
<td>• Broad impact on markets achieves carbon reduction most efficiently</td>
</tr>
<tr>
<td>– Limited cost impact, but</td>
<td>– Higher net consumer cost</td>
</tr>
<tr>
<td>– Excludes some cost-effective carbon reduction, e.g. DR & EE</td>
<td>– Benefits flow also to low-emission units, demand-side, behind-the-meter gen</td>
</tr>
<tr>
<td>– No impact on dispatch stack</td>
<td>– Reorders supply stack (with multiple fuels)</td>
</tr>
<tr>
<td>• Potential multi-year commitment aids financing</td>
<td>• Risk of price decreases raises financing Qs</td>
</tr>
<tr>
<td>• Initial interest from state commissions</td>
<td>• States unanimously oppose carbon pricing in federal tariff</td>
</tr>
</tbody>
</table>
DCEM compared to Forward Clean Energy Market

<table>
<thead>
<tr>
<th>DCEM</th>
<th>FCEM</th>
</tr>
</thead>
</table>
| • Attribute-only
 – Not necessarily a federal market | • Energy + attribute
 – FERC jurisdictional |
| • Payment varies proportional to emissions displaced
 – Keeps renewables responsive to energy market prices | • Fixed payment rate
 – Removes renewables from energy market |
| • Split risk sharing:
 – Developer carries energy commodity & operational
 – Consumers carry policy risk | • Developers carry less risk:
 – Developers have operational risks
 – Consumers carry energy & policy risk |
Next steps for Dynamic Clean Energy Market

- Technical evaluation by states’ consultant
- Further development by IMAPP sub-groups
- Tariff development by Markets Committee