

Natural Gas – A National Treasure NECPUC Symposium 5/21/2012

US Lower 48 Gas Production Sorted by 1Q12 (MMcf/d)

Source: Public company reports, Southwestern Energy

United States Shale Gas Plays

United States Shale Gas Plays

Stacked Appalachian Plays

The Current Gas Issue

3

Major US Plays

K-w

(Based on data from Baker Hughes, Smith Bits, PIRA, Pi/Dwights & HPDI)

🗙 PIRA Pipeline Flow Data: Haynesville includes both Texas and Louisiana

Supply Demand Balance

5

National Treasure Example – Fayetteville Shale

- SWN currently producing 2 BCF per day gross
- SWN reached **2 TCF** 7.5 years from 1st production in early May 2012

Fayetteville Shale – Many Years of Drilling

- SWN holds approx. 925,000 net acres in the Fayetteville Shale play (approx 1,400 sq. miles).
- Mississippian-age shale, geological equivalent of the Barnett Shale in north Texas.
- SWN discovered the Fayetteville Shale and has first mover advantage average acreage cost of \$253 per acre with a 15% royalty and average working interest of 74%.
- We plan to drill approximately 425-435 operated wells in 2012.

 $S\Lambda$

Notes: Rates are AOGC Form 13 and Form 3 test rates.

New Brunswick, Canada Project

- SWN currently holds exploration licenses to over 2.5 million acres within the Maritimes Basin
- Principal targets are the conventional and unconventional sandstone and shale reservoirs of the Horton Group (Frederick Brook Shale)
- Oil and gas production from fields along southern flank:
 - McCully reserves 190 bcfg
 - Stoney Creek cum 800,000 bo, 30 bcfg
- 3-year initial exploration license to complete work program
 - \$47MM total work commitment with options for multiple 5-year extension leases
 - \$14.2MM invested in 2011; \$13.2MM investment planned for 2012

What Makes a Project Unconventional?

Eclipse - AR-LA

"Brown Dense" is the largest source rock system in the US

Conventional: 3.4 billion BO & 38 TCFG onshore.

Source rock estimated to have generated 2.5 Trillion BOE (onshore and offshore)

Kerogen Type: I & IIS: Oil-prone kerogen (algal, amorphous, bacteria), sulfur-rich

TOC: 0.06 - 8.42% (up to 60%)

TOC Avg.: 0.58% (not corrected for Ro)

Laminated carbonate & kerogen (mm scale), in core and thin section below

Thin Section 50X

Eclipse - Brown Dense Thin Section

Interlaminated carbonate source rock with microporosity

Talley #B-1 (9190'), offset to Location #2: phi = 11.3%, perm = 0.154 md, 100x.

Regulatory Considerations for Unconventional Drilling

Surface Considerations

Subsurface Considerations

Regulatory Considerations

Surface Considerations

Surface Impact

Water Supply Water Handling Water Reuse & Disposal

Regulatory Considerations

Subsurface Considerations

Protecting Underground Water Resources

Frac Fluid Disclosure

Well Integrity is the Key

Evaluate Mechanical Integrity of Well

Well Construction Standards

1. Evaluating Stratigraphic Confinement

SWN Southwestern Energy*

Cross sectional view

Microseismic Evaluation of Stimulation Treatment

Southwestern Energy

Subsea Depth

2. WELL CONSTRUCTION STANDARDS

CEMENT

FRESH WATER AQUIFER ZONE

SURFACE CASING

PRODUCTION CASING -

Southwestern Energy

CONDUCTOR PIPE

SHALLOW PRODUCING ZONE

TARGET PRODUCING ZONE

3. Evaluating Mechanical Integrity of Well

- Internal Mechanical Integrity
 - Verify appropriateness of proposed casing program (e.g., size, grade, minimum internal yield pressure, etc.)
 - Test casing string to ensure it can withstand maximum stimulation pressure

- External Mechanical Integrity
 - Verify quality of cement
 - Identify top of cement
 - Test cement job (FIT, CBL, etc.) when operations indicate inadequate coverage

CEMENT CHANNELING

FORMATION

Southwestern Energy

Casido

PRESSURE

BUILDS

UP

SHALLOW PRODUCING ZONE

FRESH WATER AQUIFER ZONE

LEAK THROUGH CASING

CONDUCTOR PIPE

PRODUCTION CASING -

Southwestern Energy

PRESSURE BUILDS UP

FORMATION

CASING

SHALLOW PRODUCING ZONE

FRESH WATER AQUIFER ZONE

TARGET PRODUCING ZONE

Surface Considerations

Regulating Air Emissions

Emission Type

- NO_x
- SO₂
- CO
- CH₄
- VOCs (incl. BTEX)

Reduction Technology

- Catalytic reduction
- Ultra-low sulfur diesel fuel
- LNG and CNG fuels
- Oxidation catalysts
- Green completions, vapor recovery units, low bleed/no bleed pneumatic devices, plunger lift systems, leak detection

Emission Levels

- EPA
- Industry
- State regulators
- Research groups

Surface Considerations

Water Issues

Water Supply Water Handling Water Reuse & Disposal

Water Supply

Location, Volume & Timing of Withdrawals

Cumulative Impact Assessment

Alternative Sources of Supply

Arkansas Water Uses

Percent of Statewide Water Consumption (not all categories included)

Total Statewide Consumption: 11,500 million gallons per day

72%

Water Handling

Trucks vs. Pipeline

- Truck Traffic
- Road Damage

Impoundments vs. Tanks

- Closed-Loop Drilling Systems
- Recycling Logistics
- Air Emissions

Tracking Wastewater

- Characterize Wastewater
- Record Volumes Produced
- Verify Volumes Delivered

Water Reuse & Disposal

Water Recycling & Reuse

- Reduces fresh water demand
- Reduces impact on roads and related infrastructure
- Reduces amount of wastewater requiring disposal

Water Treatment Facilities

- Flowback & produced water chemistry
- Capacity & Capability limitations (NORM, DBPs, heavy metals)
- · Central vs. drill site facilities

Water Disposal Wells

- Geological & hydrological limitations
- NIMBY concerns
- Induced seismicity considerations

Water Cycle for Hydraulic Fracturing Operations

Surface Considerations

Surface Impact

Drilling Locations

• Pit construction

 Erosion and sedimentation

Chemical storage

Truck Traffic & Road Damage

Infrastructure

- Compressors
- Pipelines
- Roads
- Water treatment facilities

Top Positives

			<u>Counties</u>	
	Issues	Overall	Johnson	Wise
1	Availability of good jobs	0.36	0.28	0.45
2	Med. and health care services	0.13	0	0.27
3	Quality of local schools	0.10	0.03	0.17
4	Fire protection services	0.10	0.04	0.16
5	Local police protection	0.06	0.03	0.10

Getting worse	-1
Staying the same	0
Getting better	1

Top Negatives

			<u>Counties</u>	
	Issues	Overall	Johnson	Wise
30	Increased truck traffic	-0.73	-0.72	-0.73
29	Amount of freshwater used	-0.56	-0.53	-0.59
28	High tax rates	-0.43	-0.35	-0.51
27	Noise pollution	-0.41	-0.40	-0.43
26	Water pollution	-0.39	-0.26	-0.53

Getting worse	-1
Staying the same	0
Getting better	1

Surface Considerations

No Pad Drilling

Surface Considerations

Pad Drilling

Pad Drilling

- Reduce surface footprint by over 80%
- Reduce truck traffic up to 65%
- Optimize installation of infrastructure

Fulfilling the Promise of Natural Gas

The Promise of this National Treasure

PUC's **Power Generators Natural Gas Industry Better Environment Less Expensive Energy Energy Security**

Appendix

Weekly North American Drilling Report

Southwestern Energy

Commentary

Total US drilling rig count increased by 12 rigs to 1,986. This increase was driven by oil rig additions. In the oil category, the directional (+11) and vertical (+5) classes offset a 6 rig loss in the horizontal class. In the gas category, small gains in the directional (+2) and vertical (+1) class made up for a single rig loss in the horizontal class.

The Canadian rig count gained a total of 3 rigs. A 6 rig increase in the oil category, offset a 3 rig loss in the gas category.

Intensity Creates Visibility

675 trucks

Note: Graphs includes water activity through 60 days after first sale.

Forward-Looking Statement

Characteristics of a Shale Play

.38 nm

Hartman -Weatherford Laboratories, Mery Diaz-Campos, I. Yucel Akkutlu and Carl H. Sondergeld -University of Oklahoma

Regulatory Considerations

Surface Considerations

Surface Impact

Water Supply Water Handling Water Reuse & Disposal

