Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts Kathryn McKain^{a,b,1}, Adrian Down^{c,d}, Steve M. Raciti^{e,f}, John Budney^a, Lucy R. Hutyra^e, Cody Floerchinger^g, Scott C. Herndon^g, Thomas Nehrkorn^h, Mark S. Zahniser^g, Robert B. Jackson^{c,d,i,j,k}, Nathan Phillips^e, and Steven C. Wofsy^{a,b} ^aHarvard Univ, ^cDuke Univ, ^eBoston Univ, ^gAerodyne Research, ^hAtmospheric and Environmental Research PNAS | February 17, 2015 | vol. 112 | no. 7 | 1941–1946 | www.pnas.org www.pnas.org/cgi/doi/10.1073/pnas.1416261112 #### **Motivation** ### Global Atmosphere Perspective - Methane (CH₄) is a potent, yet shortlived greenhouse gas - The drivers of the increasing global CH₄ burden are not understood ## Local Perspective Need for quantitative information on the mass of CH₄ emitted and the volume of NG lost to the atmosphere Phillips et al., 2013 # **Study Objectives & Approach** ## **Determine with an Atmosphere-Based Method:** - 1. CH_4 emissions from the whole urban area from measured ΔCH_4 - 2. Contribution of natural gas to CH_4 emissions by compare C_2H_6 CH_4 ratios in the atmosphere and pipeline 3. Fraction of NG imported to the region lost to the atmosphere ("loss rate") ("loss rate") ### **Study Boundaries:** #### Area: 90-km radius circle centered on Boston (18,000 km² land area) #### **Time Period:** Sept, 2012 – Aug, 2013 (1 yr) # Ethane and methane are closely correlated in the urban atmosphere with a ratio similar to that in pipeline gas. | | C ₂ H ₆ / CH ₄ (95% CI) | | Natural Gas | |---------------------------------|--|---------------------|----------------------------------| | | Atmosphere | Pipeline | contribution to ΔCH ₄ | | Cool (Oct 2012-Jan 2013) | 2.6 %
(2.5, 2.8) | 2.7 %
(2.7, 2.7) | 98 % (92, 105) | | Warm
(May-June 2014) | 1.6 %
(1.4, 1.7) | 2.4 %
(2.3, 2.5) | 67 % (59, 72) | # Natural Gas Consumption Reconstructed Geographical Distribution - Base data: EIA monthly-state-sectoral consumption - Includes all sectors Electric power, Residential, Commercial, Industrial, Vehicle fuel, Pipeline & distribution use - Spatially disaggregated by: - Building square footage by fuel-type (Residential, Commercial) - Power plant location (Electric, Industrial, Commercial) # **Results Summary** ## Annual Avg Loss Rate = 2.7 ± 0.6 % *Captures emissions from all NG activities in region: transmission, distribution, end-use, LNG importation & storage, CNG vehicles *Lack of seasonality may indicate that losses do not depend strongly on seasonally varying component of the NG system, or that multiple compensating processes are contributing. # **Significance of Emissions** - Volume of Lost Gas: 15 billion scf y⁻¹, 6 scf person⁻¹ d⁻¹ - Value of Lost Gas: \$90 million y⁻¹ ## **Comparison with Official Emissions Data** Total Emissions = Emission Factor x Activity Factor - EPA GHG Inventory (Distribution, Transmission & Storage): 0.7% - MA GHG Inventory (Distribution, Transmission & Storage): 1.1% * most valid comparison, but not perfect - GHG Reporting Programs (EPA & MA): 0.6 (0.4-1.6) % - All 3 inventories use same EFs and progressively more specific AFs - Updated national EFs (Lamb et al. 2015) suggest even lower emissions